Your direct supplier on solar inverter, solar controller, solar battery , solar panel, solar lamp and solar systems. Welcome you invest our new factory and work together!
Hello,Welcome!  Login  Register      sitemaps | Board | My Orders | My Wellsee
Hot search: Solar inverter | voltage inverter | charger inverter | sine wave inverter | off-grid inverter | solar controller | MPPT | solar panel | charge controller | solar regulator
Your Position: > Knowledge >> Solar Battery >>> What's Soalr Cell

What's Soalr Cell

Cindy / 2013-04-28
[B] [M] [S]


A solar cell (also called a photovoltaic cell) is an electrical device that converts the energy of light directly into electricity by the photovoltaic effect. It is a form of photoelectric cell (in that its electrical characteristics—e.g. current, voltage, or resistance—vary when light is incident upon it) which, when exposed to light, can generate and support an electric current without being attached to any external voltage source.
The term "photovoltaic" comes from the Greek φῶς (phōs) meaning "light", and from "Volt", the unit of electro-motive force, the volt, which in turn comes from the last name of the Italian physicist Alessandro Volta, inventor of the battery (electrochemical cell). The term "photo-voltaic" has been in use in English since 1849.[1]
Photovoltaics is the field of technology and research related to the practical application of photovoltaic cells in producing electricity from light, though it is often used specifically to refer to the generation of electricity from sunlight. Cells can be described as photovoltaic even when the light source is not necessarily sunlight (lamplight, artificial light, etc.). In such cases the cell is sometimes used as a photodetector (for example infrared detectors), detecting light or other electromagnetic radiation near the visible range, or measuring light intensity.
The operation of a photovoltaic (PV) cell requires 3 basic attributes:
1.     The absorption of light, generating either electron-hole pairs or excitons.
2.     The separation of charge carriers of opposite types.
3.     The separate extraction of those carriers to an external circuit.
In contrast, a solar thermal collector collects heat by absorbing sunlight, for the purpose of either direct heating or indirect electrical power generation. "Photoelectrolytic cell" (photoelectrochemical cell), on the other hand, refers either a type of photovoltaic cell (like that developed by A.E. Becquerel and modern dye-sensitized solar cells) or a device that splits water directly into hydrogen and oxygen using only solar illumination.
[edit]Building block of a solar panel
Main article: Solar panel
Assemblies of photovoltaic cells are used to make solar modules which generate electrical power from sunlight. Multiple cells in an integrated group, all oriented in one plane, constitute asolar photovoltaic panel or "solar photovoltaic module," as distinguished from a "solar thermal module" or "solar hot water panel." The electrical energy generated from solar modules, referred to as solar power, is an example of solar energy. A group of connected solar modules (such as prior to installation on a pole-mounted tracker system) is called an "array."
[edit]History of solar cells
Main article: Timeline of solar cells
The photovoltaic effect was first experimentally demonstrated by French physicist A. E. Becquerel. In 1839, at age 19, experimenting in his father's laboratory, he built the world's first photovoltaic cell. Willoughby Smith first described the "Effect of Light on Selenium during the passage of an Electric Current" in an article that was published in the 20 February 1873 issue of Nature. However, it was not until 1883 that the first solid state photovoltaic cell was built, by Charles Fritts, who coated the semiconductor selenium with an extremely thin layer of gold to form the junctions. The device was only around 1% efficient. In 1888 Russian physicist Aleksandr Stoletov built the first photoelectric cell based on the outer photoelectric effect discovered byHeinrich Hertz earlier in 1887.[2]
Albert Einstein explained the underlying mechanism of light instigated carrier excitation—the photoelectric effect—in 1905, for which he received the Nobel prize in Physics in 1921.[3]