Your direct supplier on solar inverter, solar controller, solar battery , solar panel, solar lamp and solar systems. Welcome you invest our new factory and work together!
Hello,Welcome!  Login  Register      sitemaps | Board | My Orders | My Wellsee
Hot search: Solar inverter | voltage inverter | charger inverter | sine wave inverter | off-grid inverter | solar controller | MPPT | solar panel | charge controller | solar regulator
Your Position: > Knowledge >> Solar inverter >>> Wellsee Grid-tie inverter

Wellsee Grid-tie inverter

wellsee / 2011-06-18
[B] [M] [S]

 

Wuhan Wellsee New Energy Industry Co., is planing to expand its solar inverter (include pure sine wave inverter, off-grid inverter, Grid -tire inverter) production. In the United States, grid-interactive power systems are covered by specific provisions in the National Electric Code, which also mandates certain requirements for grid-interactive inverters.

Grid-tie inverters (GTI) are special type of inverter that converts direct current electricity into alternating current electricity and feeds it into an existing electrical grid. GTIs are often used to convert direct current produced by many renewable energy sources, such as solar panels or small wind turbines, into the alternating current used to power homes and businesses. The technical name for a grid-tie inverter is "grid-interactive inverter". They may also be called synchronous inverters. Grid-interactive inverters typically cannot be used in standalone applications where utility power is not available.

Typical operation

Grid-tie inverters are also designed to quickly disconnect from the grid if the utility grid goes down. This is an NEC requirement that ensures that in the event of a blackout, the grid tie inverter will shut down to prevent the energy it produces from harming any line workers who are sent to fix the power grid.

Inverters take DC power and invert it to AC power so it can be fed into the electric utility company grid. The grid tie inverter must synchronize its frequency with that of the grid (e.g. 50 or 60 Hz) using a local oscillator and limit the voltage to no higher than the grid voltage. A high-quality modern GTI has a fixed unity power factor, which means its output voltage and current are perfectly lined up, and its phase angle is within 1 degree of the AC power grid. The inverter has an on-board computer which will sense the current AC grid waveform, and output a voltage to correspond with the grid.

Properly configured, a grid tie inverter enables a home owner to use an alternative power generation system like solar or wind power without extensive rewiring and without batteries. If the alternative power being produced is inadequate, the deficit will be sourced from the electricity grid.

Technology

Grid-tie inverters that are available on the market today use a number of different technologies. The inverters may use the newer high-frequency transformers, conventional low-frequency transformers, or no transformer. Instead of converting direct current directly to 120 or 240 volts AC, high-frequency transformers employ a computerized multi-step process that involves converting the power to high-frequency AC and then back to DC and then to the final AC output voltage. Transformerless inverters, which boast lighter weight and higher efficiencies than their counterparts with transformers, are popular in Europe. However, transformerless inverters have been slow to enter the US market. Until 2005, NEC code required all solar electric systems to be negative grounded, an electrical configuration that interferes with the operation of transformerless inverters. The issue at stake currently is that there are concerns about having transformerless electrical systems feed into the public utility grid since the lack of galvanic isolation between the DC and AC circuits could allow the passage of dangerous DC faults to be transmitted to the AC side.

Most grid-tie inverters on the market include a maximum power point tracker on the input side that enables the inverter to extract a maximum amount of power from its intended power source. Since MPPT algorithms differ for solar panels and wind turbines, specially made inverters for each of these power sources are available.

Wuhan Wellsee New Energy Industry Co., Ltd, inversted by Hubei Bluelight Science & Technology Development Co.,Ltd, is a big manufacturer of researching and producing solar controller, solar inverter, automotive inverter and other alternative energy products.

 

Wuhan Wellsee New Energy Industry Co., Ltd,  is your direct supplier on solar inverter, solar controller, solar battery , solar panel, solar lamp and solar systems. Welcome you invest our new factory and work together!

Residences and businesses that have a grid-tied electrical system are permitted in many countries to sell their energy to the utility grid. Electricity delivered to the grid can be compensated in several ways. "Net metering", is where the entity that owns the renewable energy power source receives compensation from the utility for its net outflow of power. So for example, if during a given month a power system feeds 500 kilowatt-hours into the grid and uses 100 kilowatt-hours from the grid, it would receive compensation for 400 kilowatt-hours. In the US, net metering policies vary by jurisdiction. Another policy is a feed-in tariff, where the producer is paid for every kilowatt hour delivered to the grid by a special tariff based on a contract with distribution company or other power authority.

Characteristics

Inverter manufacturers publish datasheets for the inverters in their product line. While the terminology and content will vary by manufacturer, datasheets generally include the information listed below.

  • Rated output power: This value will be provided in watts or kilowatts. For some inverters, they may provide an output rating for different output voltages. For instance, if the inverter can be configured for either 240 VAC or 208 VAC output, the rated power output may be different for each of those configurations.
  • Output voltage(s): This value indicates to which utility voltages the inverter can connect. For smaller inverters that are designed for residential use, the output voltage is usually 240 VAC. Inverters that target commercial applications are often compatible with 208, 240, 277, and/or 480 VAC.
  • Peak efficiency: The peak efficiency represents the highest efficiency that the inverter can achieve. Most grid-tie inverters on the market as of July 2009 have peak efficiencies of over 94%, some as high as 96%. The energy lost during inversion is for the most part converted into heat. This means that in order for an inverter to put out the rated amount of power it will need to have a power input that exceeds the output. For example, a 5000 W inverter operating at full power at 95% efficiency will require an input of 5,263 W (rated power divided by efficiency). Inverters that are capable of producing power at different AC voltages may have different efficiencies associated with each voltage.
  • CEC weighted efficiency: This efficiency is published by the California Energy Commission on its GoSolar website. In contrast to peak efficiency, this value is an average efficiency and is a better representation of the inverter's operating profile. Inverters that are capable of producing power at different AC voltages may have different efficiencies associated with each voltage.
  • Maximum input current: This is the maximum amount of direct current that the inverter will use. If a DC power source, such as a solar array, produces an amount of current that exceeds the maximum input current, that current will not be used by the inverter.
  • Maximum output current: The maximum output current is the maximum continuous alternating current that the inverter will supply. This value is typically used to determine the minimum current rating of the over-current protection devices (e.g., breakers and fuses) and disconnects required for the output circuit. Inverters that are capable of producing power at different AC voltages will have different maximum outputs for each voltage.
  • Start voltage: This value is not listed on all inverter datasheets. The value indicates the minimum DC voltage that is required in order for the inverter to turn on and begin operation. This is especially important for solar applications, because the system designer must be sure that there is a sufficient number of solar modules wired in series in each string to produce this voltage. If this value is not provided by the manufacturer, system designers typically use the lower band of the peak power tracking voltage range as the inverter's minimum voltage.
  • Peak power tracking voltage: This represents the DC voltage range in which the inverter's maximum point power tracker will operate. The system designer must configure the strings optimally so that during the majority of the year, the voltage of the strings will be within this range. This can be a difficult task since voltage will fluctuate with changes in temperature.
  • IP56 rating (rest of the world): This is similar to the above NEMA rating which indicates suitability for outdoor use and installation.
  • NEMA rating (US only): The NEMA rating indicates the level of protection the device has against water intrusion. Most inverters are NEMA 3R which means they are outdoor rated for most situations.

Wellsee Grid-tie inverter

User Comment

No comment
Username: Anonymous user
E-mail:
Rank:
Content:
Verification code: captcha

View History

vedio center products center Honor Knowledge Outstanding Articles
Bluelight History  |  About Us  |  Honor  |  Knowledge  |  Feedback  |  Service  |  Company profile  |  Contact Us

© 2005-2019 Wellsee solar supply Copyright, All Rights Reserved.
Wuhan Wellsee New Energy. Block D, Zhongli Enterprise Building, No. 92, Wuhan Boulevard, Wuchang District, Wuhan, Hubei, China
Tel: 0086-13986203125,13986203097,13971182531 E-mail: sales@e-bluelight.com,admin@e-bluelight.com
skype:Cindy
cindywellseeCindy cindywellsee  skype:Doris
doriswellseeDoris doriswellsee  skype:Tracy
tracywellseeTracy tracywellsee  skype:Owen
sarawellseeOwen sarawellsee
Run 115 queries, spents 0.228736 seconds, 13 people online,Gzip enabled,take up memory 3.877 MB